# Functional Analysis

#### Bartosz Kwaśniewski

Faculty of Mathematics, University of Białystok

Lecture 13

Banach's open mapping theorem

mat h. uwb.ed u. pl/~zaf/kwasniewski

**Def.** 
$$f: X \to Y$$
 **open**  $\stackrel{\text{def}}{\iff} \bigvee_{U \subset X \text{ open}} f(U)$  open in  $Y$ 

**Rem.** A bijective map  $f: X \to Y$  is open  $\iff$  the inverse  $f^{-1}: Y \to X$  is continuous.

A continuous bijection  $f: X \to Y$  is a homeomorphism  $\iff$  it is an open map.

Let  $K_X := \{x \in X : ||x|| < 1\}$  be the unit ball in the normed space X. The ball with center  $x_0 \in X$  and radius r > 0 can be written as  $x_0 + rK_X = \{x_0 + ry : y \in K_x\}$ .

**Lem.** Let  $T: X \to Y$  be a linear operator and let  $K_X$  and  $K_Y$  be unit balls in normed spaces X and Y.

T is an open map 
$$\iff$$
  $\exists_{r>0} rK_Y \subseteq T(K_X)$ .

Moreover if T is open, it has to be surjective.

T is an open map 
$$\iff$$
  $\exists_{r>0} rK_Y \subseteq T(K_X)$ .

### Proof:

" $\Longrightarrow$ " If T is open, then  $T(K_X)$  is an open set. Since  $0 \in T(K_X)$ , there is r > 0 such that  $rK_Y \subseteq T(K_X)$ . Moreover

$$Y = \bigcup_{n=1}^{\infty} nrK_Y \subseteq \bigcup_{n=1}^{\infty} nT(K_X) = T(\bigcup_{n=1}^{\infty} nK_X) = T(X).$$

Whence T(X) = Y.

"=" Assume that  $rK_Y \subseteq T(K_X)$  for some r > 0. Take open  $U \subseteq X$ . Let  $y \in T(U)$  and let  $x \in U$  be such that Tx = y. Since U is open, there is  $\delta > 0$  such that  $x + \delta K_X \subseteq U$ . Note that

$$y + \delta r K_Y \subseteq y + \delta T(K_X) = Tx + \delta T(K_X) = T(x + \delta K_X) \subseteq T(U).$$

Hence every point in T(U) is in the interior of T(U). That is T(U) is an open set.

### Banach's open operator theorem

Let  $T \in B(X, Y)$ , where X and Y Banach spaces.

T is surjective  $\iff T$  is open.

**Dowód**: "←=" It follows from **Lem**.

" $\Longrightarrow$ "Assume that T is a surjection. Then

$$Y = T(X) = T(\bigcup_{n=1}^{\infty} nK_X) = \bigcup_{n=1}^{\infty} T(nK_X).$$

By Baire's theorem (as Y is complete) there is  $n \in \mathbb{N}$  such that  $\operatorname{Int}(\overline{T(nK_X)}) \neq \emptyset$ .

Hence there is 
$$y_0 \in Y$$
 and  $\varepsilon > 0$  such that  $y_0 + \varepsilon K_Y \subseteq \overline{T(nK_X)}$ .  
Since  $T(X) = Y$ , there is  $x_0 \in X$  such that  $Tx_0 = y_0$ . Whence

$$\varepsilon K_Y \subseteq \overline{T(nK_X)} - y_0 = \overline{T(nK_X)} - T(x_0) = \overline{T(nK_X - x_0)}$$
$$\subseteq \overline{T((n + ||x_0||)K_X)} = (n + ||x_0||)\overline{T(K_X)}.$$

Dividing by  $n + ||x_0||$  and putting  $r := \frac{\varepsilon}{n + ||x_0||}$  we get

$$rK_Y \subseteq \overline{T(K_X)}$$
.

Up to a closure it is a condition from **Lem**. To "get rid of the closure" we show that

$$\overline{T(K_X)} \subseteq T(2K_X).$$
 (2)

Let  $y \in \overline{T(K_X)}$ . There is  $x_1 \in K_X$  such that  $||y - Tx_1|| < \frac{r}{2}$ . Hence

$$y - Tx_1 \in \frac{r}{2}K_Y \stackrel{(1)}{\subseteq} \frac{1}{2}\overline{T(K_X)} = \overline{T(\frac{1}{2}K_X)}.$$

Applying the same argument to  $y - Tx_1 \in \overline{T(\frac{1}{2}K_X)}$  we may find  $x_2 \in \frac{1}{2}K_X$  such that  $||(y - Tx_1) - Tx_2|| < \frac{r}{4}$  and therefore

$$y-T(x_1+x_2)=(y-Tx_1)-Tx_2\in \frac{r}{4}K_Y\subseteq \overline{T(\frac{1}{4}K_X)}.$$

Continuing in this manner we get a sequence  $\{x_n\}_{n=1}^{\infty}\subseteq X$  where

$$x_n \in \frac{1}{2^{n-1}}K_X$$
 and  $y - T(x_1 + ... + x_n) \in \frac{r}{2^n}K_Y$ .

This second relation implies that  $T(x_1 + ... + x_n) \rightarrow y$  in Y.

(1)

While the firs relation (by completeness of X) guarantees that the series  $\sum_{n=1}^{\infty} x_n$  converges in X, as it is absolutely convergent:

$$\left\| \sum_{n=1}^{\infty} x_n \right\| \leqslant \sum_{n=1}^{\infty} \|x_n\| < \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} = 2.$$

In particular,  $\sum_{n=1}^{\infty} x_n \in 2K_X$ . Using continuity (boundedness) of the operator T we get

$$T\left(\sum_{n=1}^{\infty}x_n\right)=T\left(\lim_{n\to\infty}x_1+\ldots+x_n\right)=\lim_{n\to\infty}T(x_1+\ldots+x_n)=y,$$

Thus  $y \in T(2K_X)$ . This proves the inclusion in (2).

Together with the inclusion (1) this gives  $rK_Y \subseteq T(2K_X)$  or equivalentely  $\frac{r}{2}K_Y \subseteq T(K_X)$ . Hence T is an open map by Lem.

Cor1. 
$$\begin{pmatrix} T \in B(X, Y) \text{ and } T \text{ bijection} \\ X, Y \text{ Banach spaces} \end{pmatrix} \implies T^{-1} \in B(Y, X)$$

**Proof:** Since T is surjective, it is open by the Open Mapping Theorem. Hence for every open  $U \subseteq X$  the set  $(T^{-1})^{-1}(U) = T(U)$  is open in Y. Thus the operator  $T^{-1}$  is continuous, and therefore bounded.

**Cor2.** Every two comparable complete norms on X are equivalent.

**Proof**: Recall that a norm  $\|\cdot\|_1$  is weaker than  $\|\cdot\|_2$  if

$$\exists_{c_1>0} \ \forall_{x\in X} \ \|x\|_1 \leqslant c_1 \|x\|_2$$

that is the identity operator  $id: (X, \|\cdot\|_2) \to (X, \|\cdot\|_1)$  is bounded. Since id is bijective, its inverse

 $id: (X, \|\cdot\|_1) \to (X, \|\cdot\|_2)$  is bounded by **Cor1**. That is

$$\exists_{c_2>0} \ \forall_{x\in X} \ \|x\|_2 \leqslant c_2 \|x\|_1,$$

which means that the norm  $\|\cdot\|_2$  is weaker than  $\|\cdot\|_1$ . Hence the two norms are equivalent.

7 / 9

# **Def.** The graph of a function $f: X \to Y$ is the set

$$\Gamma(f) := \{(x, f(x)) : x \in X\} \subseteq X \times Y.$$

Lem. The graph of a continuous function is closed:

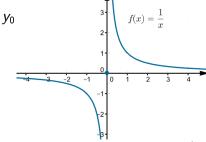
$$\begin{pmatrix} f: X \to Y \text{ continuous} \\ X, Y \text{ metric spaces} \end{pmatrix} \implies \Gamma(f) \text{ closed in } X \times Y.$$

**Proof**: If  $(x_0, y_0) \in \overline{\Gamma(f)}$ , there is a sequence  $(x_n, y_n) \in \Gamma(f)$  such that  $(x_n, y_n) \to (x_0, y_0)$ . By continuity

$$f(x_0) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} y_n = y_0$$

Hence  $(x_0, y_0) \in \Gamma(f)$ .  $\blacksquare$ Ex. The converse implication in Lem

does not hold. Let  $X=Y=\mathbb{R}$  and  $f(x)=egin{cases} \frac{1}{x}, & x 
eq 0, \\ 0, & x=0. \end{cases}$ 



## Thm. (Closed graph theorem)

A linear operator  $T: X \to Y$  between two Banach spaces is continuous (bounded)  $\iff$  the graph of T is a closed set.

**Proof**: We only need to show '← '. Note that

- 1)  $X \times Y$  is a Banach space with  $\|(x,y)\|_{X \times Y} := \|x\|_X + \|y\|_Y$
- 2)  $\Gamma(T)$  is a closed linear subspace of  $X \times Y$ .

Hence  $\Gamma(T)$  is a Banach space with the norm  $\|\cdot\|_{X\times Y}$ . Projections

$$P_1: \Gamma(T) \to X$$
, where  $P_1(x, Tx) = x$ ,

$$P_2:\Gamma(T)\to Y, \quad \text{where} \quad P_2(x,Tx)=Tx,$$

are linear and bounded ( $||P_1|| \le 1$ ,  $||P_2|| \le 1$ ). In addition  $P_1$  is invertible. Hence its inverse

$$P_1^{-1}: X \to \Gamma(T)$$
, where  $P_1^{-1}(x) = (x, Tx)$ 

is bounded by Cor1. Hence the operator

$$T = P_2 \circ P_1^{-1}$$

is bounded as a composition bounded operators.

